Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Recovery of known T-cell epitopes by computational scanning of a viral genome

Identifieur interne : 003385 ( Main/Exploration ); précédent : 003384; suivant : 003386

Recovery of known T-cell epitopes by computational scanning of a viral genome

Auteurs : Antoine Logean [France, Suisse] ; Didier Rognan [France]

Source :

RBID : ISTEX:B1B29583F4FFC0308F42FE0E0BD1D6B7C029B1B1

Descripteurs français

English descriptors

Abstract

Abstract: A new computational method (EpiDock) is proposed for predicting peptide binding to class I MHC proteins, from the amino acid sequence of any protein of immunological interest. Starting from the primary structure of the target protein, individual three-dimensional structures of all possible MHC-peptide (8-, 9- and 10-mers) complexes are obtained by homology modelling. A free energy scoring function (Fresno) is then used to predict the absolute binding free energy of all possible peptides to the class I MHC restriction protein. Assuming that immunodominant epitopes are usually found among the top MHC binders, the method can thus be applied to predict the location of immunogenic peptides on the sequence of the protein target. When applied to the prediction of HLA-A*0201-restricted T-cell epitopes from the Hepatitis B virus, EpiDock was able to recover 92% of known high affinity binders and 80% of known epitopes within a filtered subset of all possible nonapeptides corresponding to about one tenth of the full theoretical list. The proposed method is fully automated and fast enough to scan a viral genome in less than an hour on a parallel computing architecture. As it requires very few starting experimental data, EpiDock can be used: (i) to predict potential T-cell epitopes from viral genomes (ii) to roughly predict still unknown peptide binding motifs for novel class I MHC alleles.

Url:
DOI: 10.1023/A:1020244329512


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Recovery of known T-cell epitopes by computational scanning of a viral genome</title>
<author>
<name sortKey="Logean, Antoine" sort="Logean, Antoine" uniqKey="Logean A" first="Antoine" last="Logean">Antoine Logean</name>
</author>
<author>
<name sortKey="Rognan, Didier" sort="Rognan, Didier" uniqKey="Rognan D" first="Didier" last="Rognan">Didier Rognan</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:B1B29583F4FFC0308F42FE0E0BD1D6B7C029B1B1</idno>
<date when="2002" year="2002">2002</date>
<idno type="doi">10.1023/A:1020244329512</idno>
<idno type="url">https://api.istex.fr/ark:/67375/VQC-K4D7GJ9P-V/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000164</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000164</idno>
<idno type="wicri:Area/Istex/Curation">000164</idno>
<idno type="wicri:Area/Istex/Checkpoint">000D44</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000D44</idno>
<idno type="wicri:doubleKey">0920-654X:2002:Logean A:recovery:of:known</idno>
<idno type="wicri:Area/Main/Merge">003421</idno>
<idno type="wicri:source">PubMed</idno>
<idno type="RBID">pubmed:12400854</idno>
<idno type="wicri:Area/PubMed/Corpus">002485</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002485</idno>
<idno type="wicri:Area/PubMed/Curation">002485</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">002485</idno>
<idno type="wicri:Area/PubMed/Checkpoint">002354</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">002354</idno>
<idno type="wicri:Area/Ncbi/Merge">000161</idno>
<idno type="wicri:Area/Ncbi/Curation">000161</idno>
<idno type="wicri:Area/Ncbi/Checkpoint">000161</idno>
<idno type="wicri:doubleKey">0920-654X:2002:Logean A:recovery:of:known</idno>
<idno type="wicri:Area/Main/Merge">003351</idno>
<idno type="wicri:Area/Main/Curation">003385</idno>
<idno type="wicri:Area/Main/Exploration">003385</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Recovery of known T-cell epitopes by computational scanning of a viral genome</title>
<author>
<name sortKey="Logean, Antoine" sort="Logean, Antoine" uniqKey="Logean A" first="Antoine" last="Logean">Antoine Logean</name>
<affiliation wicri:level="3">
<country xml:lang="fr">France</country>
<wicri:regionArea>Bioinformatic Group, Laboratoire de Pharmacochimie de la Communication Cellulaire, UMR CNRS 7081, 74 route du Rhin, B.P.24, F-67401, Illkirch</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Alsace (région administrative)</region>
<settlement type="city">Illkirch</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Department of Applied Biosciences, Swiss Federal Institute of Technology, Winterthurerstrasse 190, CH 8057, Zürich</wicri:regionArea>
<placeName>
<settlement type="city">Zurich</settlement>
<region nuts="3" type="region">Canton de Zurich</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Rognan, Didier" sort="Rognan, Didier" uniqKey="Rognan D" first="Didier" last="Rognan">Didier Rognan</name>
<affiliation wicri:level="3">
<country xml:lang="fr">France</country>
<wicri:regionArea>Bioinformatic Group, Laboratoire de Pharmacochimie de la Communication Cellulaire, UMR CNRS 7081, 74 route du Rhin, B.P.24, F-67401, Illkirch</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Alsace (région administrative)</region>
<settlement type="city">Illkirch</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">France</country>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Computer-Aided Molecular Design</title>
<title level="j" type="abbrev">J Comput Aided Mol Des</title>
<idno type="ISSN">0920-654X</idno>
<idno type="eISSN">1573-4951</idno>
<imprint>
<publisher>Kluwer Academic Publishers</publisher>
<pubPlace>Dordrecht</pubPlace>
<date type="published" when="2002-04-01">2002-04-01</date>
<biblScope unit="volume">16</biblScope>
<biblScope unit="issue">4</biblScope>
<biblScope unit="page" from="229">229</biblScope>
<biblScope unit="page" to="243">243</biblScope>
</imprint>
<idno type="ISSN">0920-654X</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0920-654X</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alleles</term>
<term>Amino Acid Motifs</term>
<term>Amino Acid Sequence</term>
<term>Databases, Genetic</term>
<term>Epitope Mapping (statistics & numerical data)</term>
<term>Genome, Viral</term>
<term>HLA-A Antigens (genetics)</term>
<term>HLA-A Antigens (metabolism)</term>
<term>HLA-A2 Antigen</term>
<term>HLA-B Antigens (genetics)</term>
<term>HLA-B Antigens (metabolism)</term>
<term>HLA-B27 Antigen</term>
<term>Hepatitis B Antigens (genetics)</term>
<term>Hepatitis B virus (genetics)</term>
<term>Hepatitis B virus (immunology)</term>
<term>Humans</term>
<term>Immunodominant Epitopes (genetics)</term>
<term>In Vitro Techniques</term>
<term>Protein Binding</term>
<term>Software</term>
<term>T-Lymphocytes (immunology)</term>
<term>Thermodynamics</term>
<term>antigen</term>
<term>epitope prediction</term>
<term>free energy scoring</term>
<term>homology modelling</term>
<term>major histocompatibility complex</term>
<term>threading</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Allèles</term>
<term>Antigène HLA-A2</term>
<term>Antigène HLA-B27</term>
<term>Antigènes HLA-A (génétique)</term>
<term>Antigènes HLA-A (métabolisme)</term>
<term>Antigènes HLA-B (génétique)</term>
<term>Antigènes HLA-B (métabolisme)</term>
<term>Antigènes de l'hépatite virale B (génétique)</term>
<term>Bases de données génétiques</term>
<term>Cartographie épitopique ()</term>
<term>Génome viral</term>
<term>Humains</term>
<term>Liaison aux protéines</term>
<term>Logiciel</term>
<term>Lymphocytes T (immunologie)</term>
<term>Motifs d'acides aminés</term>
<term>Séquence d'acides aminés</term>
<term>Techniques in vitro</term>
<term>Thermodynamique</term>
<term>Virus de l'hépatite B (génétique)</term>
<term>Virus de l'hépatite B (immunologie)</term>
<term>Épitopes immunodominants (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>HLA-A Antigens</term>
<term>HLA-B Antigens</term>
<term>Hepatitis B Antigens</term>
<term>Immunodominant Epitopes</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>HLA-A Antigens</term>
<term>HLA-B Antigens</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Hepatitis B virus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Antigènes HLA-A</term>
<term>Antigènes HLA-B</term>
<term>Antigènes de l'hépatite virale B</term>
<term>Virus de l'hépatite B</term>
<term>Épitopes immunodominants</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Lymphocytes T</term>
<term>Virus de l'hépatite B</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Hepatitis B virus</term>
<term>T-Lymphocytes</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Antigènes HLA-A</term>
<term>Antigènes HLA-B</term>
</keywords>
<keywords scheme="MESH" qualifier="statistics & numerical data" xml:lang="en">
<term>Epitope Mapping</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Alleles</term>
<term>Amino Acid Motifs</term>
<term>Amino Acid Sequence</term>
<term>Databases, Genetic</term>
<term>Genome, Viral</term>
<term>HLA-A2 Antigen</term>
<term>HLA-B27 Antigen</term>
<term>Humans</term>
<term>In Vitro Techniques</term>
<term>Protein Binding</term>
<term>Software</term>
<term>Thermodynamics</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Allèles</term>
<term>Antigène HLA-A2</term>
<term>Antigène HLA-B27</term>
<term>Bases de données génétiques</term>
<term>Cartographie épitopique</term>
<term>Génome viral</term>
<term>Humains</term>
<term>Liaison aux protéines</term>
<term>Logiciel</term>
<term>Motifs d'acides aminés</term>
<term>Séquence d'acides aminés</term>
<term>Techniques in vitro</term>
<term>Thermodynamique</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: A new computational method (EpiDock) is proposed for predicting peptide binding to class I MHC proteins, from the amino acid sequence of any protein of immunological interest. Starting from the primary structure of the target protein, individual three-dimensional structures of all possible MHC-peptide (8-, 9- and 10-mers) complexes are obtained by homology modelling. A free energy scoring function (Fresno) is then used to predict the absolute binding free energy of all possible peptides to the class I MHC restriction protein. Assuming that immunodominant epitopes are usually found among the top MHC binders, the method can thus be applied to predict the location of immunogenic peptides on the sequence of the protein target. When applied to the prediction of HLA-A*0201-restricted T-cell epitopes from the Hepatitis B virus, EpiDock was able to recover 92% of known high affinity binders and 80% of known epitopes within a filtered subset of all possible nonapeptides corresponding to about one tenth of the full theoretical list. The proposed method is fully automated and fast enough to scan a viral genome in less than an hour on a parallel computing architecture. As it requires very few starting experimental data, EpiDock can be used: (i) to predict potential T-cell epitopes from viral genomes (ii) to roughly predict still unknown peptide binding motifs for novel class I MHC alleles.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>France</li>
<li>Suisse</li>
</country>
<region>
<li>Alsace (région administrative)</li>
<li>Canton de Zurich</li>
<li>Grand Est</li>
</region>
<settlement>
<li>Illkirch</li>
<li>Zurich</li>
</settlement>
</list>
<tree>
<country name="France">
<region name="Grand Est">
<name sortKey="Logean, Antoine" sort="Logean, Antoine" uniqKey="Logean A" first="Antoine" last="Logean">Antoine Logean</name>
</region>
<name sortKey="Rognan, Didier" sort="Rognan, Didier" uniqKey="Rognan D" first="Didier" last="Rognan">Didier Rognan</name>
<name sortKey="Rognan, Didier" sort="Rognan, Didier" uniqKey="Rognan D" first="Didier" last="Rognan">Didier Rognan</name>
</country>
<country name="Suisse">
<region name="Canton de Zurich">
<name sortKey="Logean, Antoine" sort="Logean, Antoine" uniqKey="Logean A" first="Antoine" last="Logean">Antoine Logean</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003385 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003385 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:B1B29583F4FFC0308F42FE0E0BD1D6B7C029B1B1
   |texte=   Recovery of known T-cell epitopes by computational scanning of a viral genome
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021